Complex Function Visualizer
Drag the indicators on the XY pads to manipulate the complex constants controlling the function $f(z) = z^2 + c + d \cdot z + e \cdot z^3 + f/z$. Observe how the grid transforms and distorts in the complex plane. The colors represent the argument (angle) of the transformed complex numbers.
Modulate ‘c’ (Real & Imaginary)
c: 0.00 + 0.00i
Modulate ‘e’ (Real & Imaginary)
e: 0.00 + 0.00i
Modulate ‘d’ (Real & Imaginary)
d: 0.00 + 0.00i
Modulate ‘f’ (Real & Imaginary)
f: 0.00 + 0.00i
Leave a Reply